Webserver deployment on

“Amazon Web Services” using IAC tool “Terraform”

Raghavendra Angara
Department of Dev-Ops Engineering

Nexiilabs

1. Abstract

The purpose of this technical paper is to provide a solution for deployment of webserver application facing public
internet which process the user’s request by automating the entire infrastructure deployment. The process of creating,
deploying and configuring the webserver on to one of the popular cloud platforms, Amazon Web Services using Dev-
ops tool, Terraform. This technical paper will take you to a step-by-step procedure on how to automate and deploy
webserver application. This paper will cover all the technical aspects which helps to achieve webserver running on
desired network along with the security.

2. Introduction

Terraform is a simple and very powerful orchestration tool developed to provision the infrastructure for the popular
cloud platform which includes AWS, Google Cloud and Microsoft Azure. Terraform can also be used as a configuration
management tool but is best suited for orchestration (provisioning).

AWS, Amazon Web Services, the popular cloud platform today supports huge enterprise application deployments.
AWS provides secure cloud platform which offers compute, database, content delivery, storage and many more
functionalities to serve small, medium and large scale enterprise.

This paper will deep dive the reader for automating the deployment process using Terraform in AWS.

3. Work Done

3.1 Problem statement:

To Deploy an infrastructure solutions like a webserver, we require a considerable efforts of AWS architects for
configuring VPCs, subnets, routing tables, creating instances etc., these efforts are not easily repeatable and cannot
modify easily in one shot.

Also there will be me many configuration changes in the infrastructure after the deployments, any change in the
configuration may lead to the confusion and there is no way to store/track the state changes between old and new
deployments. For example a change in the number of instances, deletion/creation of snapshot, Instances name,
instances type changes etc., are not tracked and need lot of manual efforts to store the changes and restore the
configuration if required.

3.2 Proposed solution:

Terraform, an “Dev-Ops” IAC (Infrastructure as a code) tool address these issues and helps the DEV-OPS teams to
automate their infrastructure provisioning to third party cloud platforms. Terraform uses it CORE executable binary
and make RPC to communicate with terraform plugins and provision the infrastructure configuration deployments.

Terraform is divided in to two parts, Terraform CORE and Terraform Plugins. The Terraform CORE is a main executable
binary which invokes the plugins. A terraform Plugin is an implementation of provider services, which has all the
modules that are developed to provision infrastructure in a particular cloud provider Platform.

This paper will give a comprehensible view to automate a simple webserver deployment in a Virtual Private network
of a VPC.

Note: This paper gives only a brief and simple automated template of terraform which does not cover modules
and other functions

This section covers the various resources that are required to deploy a webserver in
Amazon Web Services using “Terraform”. This complete configuration section is built AWS Resources:

using terraform templates and executed by terraform. Virtual Private Network

e Create Virtual Private network (VPC) with CIDR range Public subnet

e Create a Public subnet with any of the CIDR block range, where the webserver
will be deployed to face Internet users and handles their requests. The Route tables
webserver will be assigned with a public IP as it is facing the internet users Internet gateways

e Create an “internet gateway” which connects the above created VPC to the .

) EC2 instance
Internet.

e A routing table will be created to allow the EC2 Instances (where the Security Group
webserver is deployed) to the outside WAN network.

e A Front End server, virtual instance is created to serves as a webserver which

deployed in public subnet of a VPC.

The configuration is being deployed in any of the selected region in the Amazon

Note: Assuming the reader has basic understanding on Amazon Web services

3.4 Terraform Configuration:

The terraform works with Terraform CORE, an executable binary by “Hasicorp” which uses the RPC calls to Terraform
plugins to provision the infrastructure on Cloud platforms.

Terraform is a declarative method of automating the infrastructure configuration completely and executes the code
for further provisioning. Terraform provides a strong, powerful and secure functions to save or restore the
configuration after the changes have being made. Terraform's state file ".tfstate” will maintain the current state and
can be backed up using “.tfstate.backup” to retrieve the old state.

Terraform, a tool that allows the DEV-OPS team to easily change any of the configuration in the cloud using the same
terraform template and can be saved in the " tfstate” file.

Terraform template:

A terraform template is supported with two formats “.tf” and “.tf,json". This paper will present the template with “.tf"
format. The user will present all his/her infrastructure requirements which to be provisioned. The terraform CORE reads
the template files and download the necessary modules/provider-modules for specified providers and execute to
provision the infrastructure.

Terraform Execution:

Once the user capture all his requirements in template with “.tf" or ".tf json” formats, the user will initialize the terraform
configuration nothing but all the templates that ends with “.tf" or “tf,json”. The command “terraform init” will read all
the templates and loads all the necessary modules and provider plugins modules to deal with particular provider in
order to provision the infrastructure.

Once the necessary modules and provider plugins are loaded, the “terraform plan” will give an overview of a planned
configuration plan.

Lastly, the command “terraform apply” will execute the planned configuration and provision the infrastructure on
specified cloud platform.

Here are some of the useful commands that are helpful to execute terraform template:

Terraform init, will initializes and load all necessary plugins with respect to the provider. It also load
modules/functions.

Terraform plan, helps to pre-check the infrastructure configuration which is about to provision.
Terraform apply, will apply the infrastructure configuration to a cloud platform based on the template prepared.

Terraform state show, will helps to understand the current configuration which is deployed using terraform template.

3.5 Infrastructure provisioning with Terraform:

This section will dive into the step-by-step procedure of creating a terraform template for deploying a webserver in

Amazon Web Services

provider.tf Variables.tf Tarraform.tfvars

® Pass values to
variables

e Variable
declaration

® Provider

«“ 4

aws

e Terraform Provider Configuration:

Configure the provider by passing Access Key, Secret Key and region to provide authentication with the AWS Cloud.
When a terraform is initialized using “terraform init", the required cloud provider Plugins are installed first time. The
terraform CORE execution binary will use the REST APIs and provision the infrastructure.

provider “aws™{]

-

access _key = "${var.access _key}”

secret key =
region = "${var.region}”

i
J

e Terraform Variable declaration:

Create a file "variables.tf” and declare the input variables to pass across the “main.tf” files.

variable

variable

variable

variable

variable "public
variable "wvpc_tag"

variable "pub_subnet_t

variable "ipw_tag™ {}

variable "i fromport-http™
wvariable ingresstoport-http™ {}
wvariable i sfromport-htt
wvariable i toport-https™
variable ™31 -essfromport-ssh”
variable "i . ssh"™
variable

variable

variable

wvariable

variable

variable "instance_type™ {}
wvariable r_pair"”

variable "instance_ tags" {}

e Terraform.tfvars declaration:

The values that are declared here are passed to the variable.tf files and from there the terraform core will be
executed.

vpc_cidr = "12.8.6.8/16"
public_cidr = "12.9.8.1/24"
vpc_tag = "terratorm-wvpc”
pub_subnet_tag = "publicsubnet-terraform™
ipw_tag = "igw-terraform”
romport-hittp = 88"
toport-hitp = "88"
romport-hittps =
toport-hitps =

fromport-ssh =

romport-rdp "3389"
sstoport-rdp = "3389"
egressfromport = "@
egresstoport = "@"
i "ami-eBbascd

e VPC Configuration:

resource "aws vpc" "main™

cidr block = "${var.vpc_cidr}”
tags = {

Name = "${var.vpc_tag}"

}
|

e Public Subnet:

resource “aws_ subnet” "main™ {
vpc_id = "${aws vpc.main.id}"
cidr block = "${var.public cidr}”
tags = {

Name = "${wvar.pub subnet tag}"

}

}
#AWS Internet Gateway

resource "aws_internet gateway”™ "gw" {
vpc_id = "${aws vpc.main.id}"

tags = |
Name = '
}

}

${var.igw tag}"”

AWS Public Route - Main Route table

" "main” {

route table id = "${aws vpc.main.main_ route table
destination cidr block = "@.8.8.8/8"

gateway id = "${aws_internet gateway.gw.id}"

}

resource "aws_route

resource "aws_route_table_association™ "b™ {
subnet_id = "${aws subnet.main.id}"
route table id = "${aws vpc.main.main route table id}"

e Security Group for Webserver:

AWS Security Group -Webserver

resource "aws_security_group™ "Webserver-5G" {

name = "Webserver-5G"

description = "Allow inbound traffic for the Webserver™
vpc_id = "${aws_vpc.main.id}"

ingress {
from_port
to_port
protocol
cidr_blocks

§

ingress {
from_port
to port
protocol
cidr_blocks

H§

ingress {
from_port
to_port
protocol
cidr_blocks

¥

ingress {
from_port
to_port
protocol
cidr_blocks

§

egress |
from_port
to port
protocol

cidr_blocks =

§
tags {

"${var.ingressfromport-http}"
"t{var.ingresstoport-http}"
"tep®

["e.8.8.8/8"]

"${var.ingressfromport-https}"
"${var.ingresstoport-https}"
"tep”

["B.0.08.@/8™]

"f{var.ingressfromport-ssh}"
"£{var.ingresstoport-ssh}"

"${var.ingressfromport-rdp}"

"${var.ingresstoport-rdp}"
llt‘: p 1]
["0.0.8.8/8"]

"t{var.egressfromport}"
"t{var.egresstoport}”
n_qm

["B.8.8.8/8™]

Name = “"Webserversg™

e Webserver:

AWS Webserver
resource "aws_instance

webserver™ {

ami = "${var.amiid}"
user_data = <<-EOF
#!/bin/bash -xe

sudo yum update -y

sudo yum install httpd -y
sudo fetc/init.d/httpd start

echo "<html><body><hl>fAwesome</hl></body></html>" > SvarSwww/html/index.tml
EQF

count = 1

instance_type = "tl.micro”
key_name = "${var.key_pair}"

subnet_id = "${aws_subnet.main.id}"

assoclate public_ip address = true

security pgroups = ["${aws_security_ group.Webserver-5G.id}"]
tags {

Mame = "${var.instance_tags}"

}

3.6 Deploy the infrastructure:

Once the template creation is done, use “terraform init” to load the required provider plugins and continue to check
the infrastructure to be built using “terraform plan”. Once the configuration is verified, use “terraform apply” to
deploy the infrastructure

“terraform apply”

“terraform plan”

“terraform init”

e Loads the * Plan gives the) Derf)fliOy :ht? n
plugins for gverview of g?] reiu eacti?/e
respective infrastructure loud pl f

e to be deployed cloud p attorm
provider “aws ie “AWS”

AWSVPC 12.0.0.0/16 .

TERRAFORM ‘ y
Main route table
Destination Targst .
¢ Qverview 1200015 loral e
Of plan 0.0.0.0/0 awi-terraform pe _

i N s \/ ~
12.0.05 @l <::::{ Router | () b

. . ,"’ll
Webserver _/ ‘é!.?.e_’.'l@%n
ateway %
12.0.0.0/24 \\ <
Public Subnet
* Provisioning]

infrastructur
e

“terraform init”

D:\terraform_0.11.7_ windows_amdb4\templates\terraform_webhserver>terraform init

ing provider plug
— Checking for available provider plugins on https://releases.hashicorp.comn...
— Downloading plugin for provider “aws" (1.28.0)>...

The following providers do not have any version constraints in configuration.
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = “..." constraints to the
corresponding provider blocks in configuration, with the constraint strings

suggested helow.

»* provider.aws: version = > 1_.28"
* provider.template: version = "> 1.8"

“terraform plan”

ulnduu' _aum ibd\tcrrplL\LL_.\l,crr(\l orm_wehbhserver>terraform plan
in -~ riow o plan.
-3 w111 hu, u:,etl '.u calculate this plan. but will not be
pers]ﬂt?d to local o» r»emote state storage.

An execution plan has been generated and is shown below.
Resource actions are indicated with the following svymbols
create

Terraform will perform the following actions:

id:= <computed>
ami:= i e866086d4""
associate_public_ip_ address: 3
availability _=zone: <computed>
ebs _block_device . iz <computed>
ephemeral_ _block_device . #i: (computed)
get_ password_data:z *fals
instan _state: <computed>
instance_type: "¢t1 .micr»o'
ipub_address <computed>
ipuvb6_addresses . #: <computed>
key_name = "terraform
network_ _interface . #: <computed>
network_ interface__id: <computed>
password_data: <computed>
placement_group: <computed>
primary network_ _interface__id: <computed>
private dn\,: <computed>
private _ <computed>
<computed>
publ;(. <computed>
roo0t h10ck device .8: <computed>
security_gro <computed?>
source __de -he true*’
subnet_id:=: v"${aws_subnet _main.id>"
tags.~= e e
tags -.Name = ‘"Webserver_ _instance'’
tenancy: <computed>
user_data:s cc2BcB4cfBd?4e85384bcfe?b3eb645686aa53cH?"”
volume _tac - <computed>
upc_: \,ecurltyaqroup ids.H: <computed?>

Note; The above output is only showing the webserver instance installation as the output of this command is too
large.

“terraform apply”

“terraform_webserver>terraform apply

n execution plan has been generated and is shown be low.
esource actions are indicated with the following symbols:
create

raform will perform the fFollowing actior

Lcomputed >
H "ami—BeB86686d4""

associate_public_ip address: "true"'
availability_=one: <computed >
ehs_block _device.¥: <computed >
ephemeral_block _device - #: Lcomputed >
get_password_data: "false"
instance_state: <cnmputed)
instance_type = *t1 .micro'
ipve_address_count “computed >
ipub _addre - Lcomputed >
key_name : “"terraform"”
network_interface .li: Cocomputed >
network_interface_ did: Lcomputed>
pa word_data: Ccomputed >
placement _growp: {Lcomputed >
primary_network_interface__id: <computed >
private_dns: <computed >
private_ip: <computed:>
publie_dns =z <computed:>
public_ip:= Locomputed >
yoot_block_device _.#: Lcomputed >
security_groups .i: Lcomputed >
source_dest_check: true '
subnet_id: "${aws_subnet . .main.id>"
tags .¥%: vl Ll
tags . Name = "Hehserver_instance’
tenancy: <Lcomputed:>
user_data: “"cc2BcB4cfBd?4e85384bcfe?bleb456B6aa53c@? "
volume _tags.¥: Lcomputed:>
vpe_security_group_dids . #: <computed>

id= <computed >

tags . x= "1.

tags .Mame = "igw—terraform"
vpc__id: elaws_vpc.main . id>*

Do you

large.

Note; The above output is only showing the webserver instance installation as the output of this command is too

n: 8 to add, 8@ to change, B to destroy.

want form the

?

Only ‘vyes' will be accepted to approve.

assign_generated
cidr_block:
default_network_acl_id:
default_route_tahle_id:
default_security_group_id:
dhcp_options_id:
enable_classiclink:
enahle_classiclink_dns_support:
enable_dnz_hostnames :
enable_dns_support:
instance_tenancy:
ipvb_association_id:
ipub_cidr_block:
main_route_tahle_id:
tags.x:
tags.Namg:

vb_cidr_block:

P

Hame: """ =3 ¢

i ?" =} "wpc—1bhebbh?c"
-;dd;ess_nniﬁféatiun:

assign_ip
availahility_zone:

cidr_block:

ipub_cidr_block:
ipub_cidr_block_association_id:
map_public_ip on_launch:
tags.X:

tags .Name :

vpc_id:

ooy

Terraform will perfﬁrﬁlfhe actions descrihed above.

"False"
"2.8.8.8-16"
" computed "
"“computed>"
"{computed>"
"“computed "
"“computed"
"{computed>"
"{computed:>"
"true"
"default"
"{computed>"
" computed>"
" computed "

ll1ll

"falze"

"{computed>"
"12.0.8.1-24"

" computed>"
"“computed»"

"false"

ll1ll
"publicsubnet—terraform"
"wpc—1hebhbh??c”

AWS console output:

Name

B Webserver_instance

Instance: || i-09b57471b08191553 (Webserver_instance)

Description Status Checks Menitoring Tags
Instance ID i-09b57471b08191653
Instance staie rumning
Instance type t1.micro
Elastic IPs
Availability zone us-west-1c

Webserver-3G. view in|

outbound rules

Security groups

bound rules. view Secondary private IPs

Scheduled events Mo scheduled events VRCID

AMIID amzn-ami-hvm-2018.03.0.20120622-%36_64-gp2 Subnet 1D
(ami-De865045d)

Platiorm - MNetwork interfaces

lAMrole - Source/dest. check

Key pair name terraform T2 Unlimited

Owner

4. Conclusion:

Instance 1D « Instance Type ~ Availability Zone = Instance State - Status Checks
i-09b5T471008191553 t1.micro us-wesi-1c & running = Initializing
Public IP: 54.67.33.157
Public DNS (IPv4) -
IPv4 Public IP 54.67.33.157
IPvB IPs -
Private DNS ip-12-0-0-252 us-west-1_compute.internal
Private IPs ~ 12.0.0.252

vpc-1bebb77c
subnet-b07155eb

eth0
True

334461511758

= Alarm Statu

Nane

Using an IAC tool, Terraform, infrastructure provisioning is made easy, reliable and reusable. The same template can
be used to deploy a webservers in different regions in a couple of minutes without user errors and rework. The same
template can also be used to modify the infrastructure based on the business requirements and these changes can
be saved in a state file.

5. References

Terraform:

https://www.terraform.io/intro/index.html

https://www.terraform.io/intro/getting-started/build.html

AWS:

https://aws.amazon.com/vpc

https://www.terraform.io/intro/index.html
https://www.terraform.io/intro/getting-started/build.html
https://aws.amazon.com/vpc

